ALGÈBRE — L’algèbre au sens moderne, à savoir l’étude des structures algébriques indépendamment de leurs réalisations concrètes, ne s’est dégagée que très progressivement au cours du XIXe siècle, en liaison avec le mouvement général d’axiomatisation de… … Encyclopédie Universelle
Algebre universelle — Algèbre universelle L algèbre universelle est la branche de l algèbre qui a pour but de traiter de manière générale et simultanée les différentes structures algébriques : groupes, monoïdes, anneaux, espaces vectoriels, etc. Elle permet de… … Wikipédia en Français
Algèbre Universelle — L algèbre universelle est la branche de l algèbre qui a pour but de traiter de manière générale et simultanée les différentes structures algébriques : groupes, monoïdes, anneaux, espaces vectoriels, etc. Elle permet de définir de manière… … Wikipédia en Français
Algèbre Nouvelle — L’algèbre nouvelle ou analyse spécieuse est un projet de formalisation de l’algèbre tenté par François Viète et ses successeurs. Il marque le début de la formalisation algébrique (fin XVIe début XVIIe siècle). Sommaire 1 Idées générales 2 … Wikipédia en Français
Algebre tensorielle — Algèbre tensorielle L algèbre tensorielle au sens de théorie des tenseurs est traitée à l article « Tenseur ». En mathématiques, une algèbre tensorielle est une algèbre sur un corps dont les éléments (appelés tenseurs) sont représentés… … Wikipédia en Français
Algèbre Tensorielle — L algèbre tensorielle au sens de théorie des tenseurs est traitée à l article « Tenseur ». En mathématiques, une algèbre tensorielle est une algèbre sur un corps dont les éléments (appelés tenseurs) sont représentés par des combinaisons … Wikipédia en Français
Algebre de Kac-Moody — Algèbre de Kac Moody En mathématiques, une algèbre de Kac Moody est une algèbre de Lie, généralement de dimension infinie, pouvant être définie par des générateurs et des relations via une matrice de Cartan généralisée. Les algèbres de Kac Moody… … Wikipédia en Français
Algebre de Clifford — Algèbre de Clifford En mathématiques, les algèbres de Clifford sont des algèbres associatives importantes au sein des théories des formes quadratiques, des groupes orthogonaux et en physique. Elles peuvent être vues comme l une des… … Wikipédia en Français
Algèbre De Clifford — En mathématiques, les algèbres de Clifford sont des algèbres associatives importantes au sein des théories des formes quadratiques, des groupes orthogonaux et en physique. Elles peuvent être vues comme l une des généralisations possibles des… … Wikipédia en Français
Algèbre de Clifford du plan euclidien) — Algèbre de Clifford En mathématiques, les algèbres de Clifford sont des algèbres associatives importantes au sein des théories des formes quadratiques, des groupes orthogonaux et en physique. Elles peuvent être vues comme l une des… … Wikipédia en Français